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Thermodynamics of translational crack 
layer propagation* 
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Recognizing that fracture in many materials propagates as a crack preceded by intensive 
damage, a theory is presented to model the crack and the preceding damage as a single 
thermodynamic entity, i.e., a crack layer (CL). The active zone of the CL may propagate 
by translational, rotational, expansional and/or distortional movements. Concepts of 
irreversible thermodynamics are employed to derive the law of CL propagation by trans- 
lational mode as: 

3J1 (d) 
i -  

3'*R1 --Jl 

where I is the rate of CL translation,/3 is a dissipative coefficient, J~ is the energy 
release rate, (d) is a characteristic size of the active zone, 7* is the specific enthalpy 
of damage and R 1 is the translational resistance moment. This expression describes the 
entire history of CL propagation. Experimental results on fatigue crack propagation in 
polystryrene are in good agreement with the proposed formalism. 

1. Introduction 
Fracture of  solids, polymers are no exception, 
occurs as a sequence of molecular processes lead- 
ing to microscopic (local) damage. Accumulation 
of local damage gives rise to a macroscopic crack 
which propagates; first in a slow fashion, then 
critically (avalanche-like) causing ultimate failure. 
Efforts addressing lomz term strength of materials 
generally extend into three main directions: (1) 
phenomenological theories of  local long term 
strength, (2) studies of  crack propagation, and 
(3) statistical approach to failure. A theory uni- 
fying these three facets is being advanced at 
present by Chudnovsky and coworkers [ l - 8 ] .  
The theory recognizes a representative volulne of 
the material as the basis for property determina- 
tion at a point within the continuum. The size of 
the representative volume which must be large in 
comparison with the elementary substructure is 
determined from conditions of statistical hom- 
ogeneity [91. In this respect, the theory identifies 
fracture events within three interrelated scales. 

Considering polymers as an illustrative example, 
the accumulation of  intra and interchain motion, 
and chain scission may be conceived as sub- 
microscopic events. The accumulation of submicro- 
scopic events to a critical level leads to micro- 
scopic damage. Macroscopic cracks appear as a 
result of the accumulation of microscopic damage 
to a critical level. The crack(s) propagates first in 
a quasistatic fashion until a stage is reached where 
catastrophic failure is experienced due to global 
instability. 

Present experimental techniques provide useful 
qualitative information documenting the evolution 
of submicroscopic events giving rise to microscopic 
damage. It is within the microscale (10 -6 - 1 0  -4 m) 
where damage evolution can be characterized 
quantitatively with a reasonable degree of  accu- 
racy. Accordingly, information can be obtained to 
test ideas modeling crack initiation and propaga- 
tion. Having this in mind, we proceed to describe 
the crack layer model for crack propagation in 
polymers. 
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Figure 1 An optical micrograph of a SEN polystyrene 
specimen under fatigue loading. The propagating crack 
is preceded and surrounded with intensive crazing [8]. 

2. The crack layer concept 
Microscopic damage accumulation to a critical 
level is always a precursor of  crack initiation, even 
in the presence of  a notch [10, 1 1]. Once initiated, 
the crack grows surrounded and preceded by a 
damage zone. The latter consists of structural 
transformations such as crazes, shear bands, voids, 
crystallinity changes, etc. Although the space 
within which such transformations disseminate can 
be very small compared with crack length, the 
energy expended on it could be orders of  magni- 
tude higher than that expended on the creation of  
crack "surfaces" [4, 12]. For example, Fig. 1 
exhibits a layer of extensive crazing accompanying 
fatigue crack propagation in polystyrene [7]. Simi- 
lar features of  fracture propagation have been 
observed recently in various materials [4, 6, 10, 
1 3 -1  5 ]. A rational model of  fracture propagation 
has to account for the fracture phenomenon as 
observed. Two complementary procedures should 
be followed. One is to model the stress-strain 
field due to the interaction of the main crack and 
multiple microcracks (crazes). The second is a 
thermodynamic approach which describes the sys- 
tem in terms of integral damage characteristics. 
Recent reports [5, 16] describe early results of  
elastic crack damage interaction. The general 
thermodynamic framework of  the crack layer 
theory is presented in [17]. In the present paper, 
the discussion is limited to a thermodynamic treat- 
ment of crack layer propagation by translational 
mode. Crack layer propagation in polystyrene [1 1] 
is used as an illustrative example. 

2.1. Damage density 
In our model, damage is defined as discontinuities 

such as microcracks, crazes, shear bands, etc. Such 
discontinuities can be visualized as two dimen- 
sional defects and thus be characterized by their 
middle surfaces. Specifically, we use the total area 
of middle surfaces of  discontinuities within a unit 
volume as damage density, p, with the dimension 
m2m -3. For example, the craze density in the 
vicinity of  the main crack has been directly evalu- 
ated from optical micrographs of  thinned poly- 
propylene samples [6]. A more complete descrip- 
tion of damage requires an additional parameter 
characterizing orientation [17]. In this paper, since 
we consider rectilinear crack propagation where no 
change in damage orientation occurs, p suffices 
for damage characterization. 

2.2.  Def in i t ion  o f  the  crack layer 
A system consisting of  a crack and surrounding 
damage is considered as a macroscopic entity; that 
is a crack layer, (eL), (Fig. 2). This is a layer of  
transformed (damaged) material which propagates 
into the initial material. The front zone of the CL 
within which damage accumulation is non zero 
(p > 0; /~ > 0) is defined as the active zone. At 
temperatures well below the glass transition Tg, 
the rate of damage-change (further growth or 
healing) under unloading conditions is negligible. 
Thus, a wake zone ( p > 0 ;  / 5 = 0 )  appears as a 
trace of the active zone propagation. The active 
zone is confined by a leading edge, (p(l)), and a 
trailing edge, (F{t)), (Fig. 2). Motion of the active 
zone, in the general sense, can be resolved into the 
following elementary movements: translation, 
rotation, isotropic expansion, and distortion 
(shape changes). Usually, the size of  the active 
zone is small with respect to the crack length, 
therefore affine deformation of  the active zone 
can reasonably approximate the actual evolution 
of damage. Accordingly, the rates of translation i, 
rotation 05, isotropic expansion #, and distortion d, 
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Figure 2 A schematic illustration of a crack layer in an 
infinite plane. 
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are considered as thermodynamic fluxes. The law 
of CL propagation is thus established by relating 
the fluxes to the reciprocal forces (causes) within 
the framework of irreversible thermodynamics. 

3. Thermodynamic relations 
We consider fracture propagation as a thermo- 
dynamically irreversible process. For such a pro- 
cess, the principle of extremal entropy production 
usually substitutes the variational principle of 
classical thermodynamics. The total entropy change 
of a solid containing a CL is given by 

TOT = Si +Se (1) 

where Si is the entropy production due to CL pro- 
pagation and other dissipative processes, and Se is 
the rate of entropy change due to exchange with 
the surrounding medium. Our goal is to define the 
entropy production due to CL propagation in 
order to identify thermodynamic forces (causes) 
reciprocal to the rates of translation, rotation, 
expansion and distortion of the active zone. For 
this purpose the following assumptions are adopted. 

1. Small deformation is considered. The total 
strain tensor, E, can thus be decomposed into per- 
fectly elastic (thermodynamically reversible) defor- 
mation, E(e); deformation E(d)resulting from the 
creation of discontinuities like crazes; and irre- 
versible deformation, E (i), such as viscous flow: 

E = E (e) 4- E (d) 4- E (i) ( 2 )  

Accordingly, the total work ( W = f v  a: E dr; where 
a is the stress tensor, and v is the volume) can be 
decomposed into three corresponding components: 

w = w e +  w d +  ~*i (3) 

2. A part, D of the work, Wi, done on irre- 
versible deformation is dissipated on damage 
formation. The rest of Wi is converted into heat Q. 
Thus, the rate of energy dissipated on damage for- 
mation and growth D is defined as 

b = W i -  O (4) 

Since/5 = 0 everywhere outside of the active zone,/) 
is localized only within the active zone. Outside of 
the active zone, the work done on irreversible 
deformation is totally converted into heat. 

3. The Helmholtz free energy, F, of the solid is 
presented as the sum 

f = Fo + Fe (5) 

where Fo is the free energy of the unstressed state 
and Fe is the elastic strain energy. The first term 
Fo becomes significant when discontinuities 
(cracks, crazes, etc.) are introduced. Equation 5 
implies that no Helmholtz free energy is associated 
with irreversible deformation. 

4. Gibbs potential, G, is introduced as 

G = Po +Pe (6) 

where the elastic potential energy Pe is conven- 
tionally described as the difference between the 
elastic strain energy Fe and the work done on 
elastic deformation, We: 

Pe = Fe -- We (7) 

Similarly, the potential energy of the initial 
unstressed state, P0, is introduced as 

eo = Fo -- W d (8) 

The latter reflects the potential energy change due 
to damage. 

5. Crack propagation is analysed under iso- 
thermal conditions with zero gradient of tempera- 
ture. It follows that all heat generated within the 
system is radiated in an equilibrial fashion. 

Based on the above statements, the entropy pro- 
duction due to CL propagation has been derived as 
[17]. 

TSi = b 4- i X  tr 4- o~X r~  Jr- d X  exp  4- dX dev (9) 

where X t~, X r~ X exp and X dev are generalized 
forces reciprocal to the corresponding fluxes J, 
05, d, and d. Each of these forces is given by the 
negative first partial derivative of Gibbs potential, 
G, with respect to the corresponding generalized 
coordinate. Thus, for example, the driving force 
for CL translation, X tr, is given by 

aG X tr - (10) 

According to the presentation of Gibbs potential 
given in Equation 6, the translational force consists 
of two components. The first is the active part 

ape 
J1 - -  (11 )  

which is the conventional energy release rate. The 
second is the resistant part [1 7] 

aPo 
--'y*R~ = -- al (12) 
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where 7* is the specific enthalpy of damage and 
R1 is the CL translational resistance moment. 
Thus, the thermodynamic force results from the 
competition between the active and the resistant 
tendencies. Below, we present a brief description 
of 3'* and R1. 

3.1. The specific enthalpy of damage 
Damage events commonly encountered in poly- 
mers, such as crazes and shear bands, are consid- 
ered as discontinuities and characterized by their 
middle surfaces. The difference between the 
enthalpy densities of damaged and initial matter 
multiplied by the thickness of an element of dam- 
age (craze or shear band) represents the specific 
enthalpy of damage with dimensions of  Jm -2. 
Referring to Figs. 1 and 2, CL propagation is 
accompanied by damage nucleation and growth. 
This constitutes an energy sink which is the source 
of resistance to propagation. Thus, the transla- 
tional resistance moment R~ accounts for the total 
amount of damage increment associated with CL 
advance, and is given by the following integral over 
the trailing edge P(t): 

R1 = f r ( t )pn~  dP (13) 

where nl is the projection of the unit normal vec- 
tor on the tangent to the crack trajectory at the 
crack tip [17]. Obviously, the'resistance moment 
is a vector quantity whose magnitude is a pure 
number. Thus, 7*R1 has the dimension of Jm -2 . 
It is worth noting that the energy release rate J1 is 
also a vector quantity with direction along the tan- 
gent of the crack trajectory (for smooth trajec- 
tories), Since J~ and 7*R~ have the same direction 
which is uniquely defined for a given crack path, 
it is convenient to use the same symbols for the 
magnitude of these vectors. That is, J1 and 7*R~ 
are used to express I Jli and [ 3'*R~ 1, respectively. 

3.2. Translation driving force 
From Equation 10, using Equations 6, l I and 12, 
translational force is expressed as 

x t r  = J1 - -  7 $ R 1  (14) 

The first term, the energy release rate, expresses 
the amount of energy available for CL translation. 
The second, on the other hand, is the amount of 
energy required for nucleation and growth of the 
damage surrounding the crack and the crack itself. 
Titus, the magnitude of the thermodynamic force 
represents the energetic barrier for CL advance. 

Other thermodynamic forces, i.e. X r~ X exp and 
X dev possess similar structure. 

4. Law of translational CL propagation 
For the case considered, i.e., CL propagation by 
translational mode alone, Equation 9 reduces to: 

TS i -= /9 + iX tr (1 5) 

Upon substitution of Equation 14 into Equation 
15, we obtain: 

TSi = s + i (J ,  --3'*R1) (16) 

According to the second law of thermodynamics, 
the entropy production is non-negative, i.e., 

rSi >~ 0 (17) 

Analysis of stability shows that ,/1 -- 3'*R1 is non- 
positive for slow crack propagation [17]. Hence, 
CL propagation is prohibited by the second law 
unless the first term, D, of Equation 16 provides 
enoug.h dissipation to compensate for the negative 
term l ( J 1  - -  7"R1). 

Usually, the constitutive equations relating 
thermodynamic fluxes and forces are obtained 
from various formulations of  the second law as a 
variational principle. Applying the principle of 
minimal entropy production, which yields S'~ = 0 
for this case, we obtain the law of CL propaga- 
tion from Equation 16 as: 

b 
i - (1 s) 

7"R1 --J1 

The denominator represents the energetic barrier 
for CL propagation. 

The rate of energy dissipated on damage forma- 
tion and growth, D, can be assumed proportional 
to the total dissipated work, W i. The coefficient of 
proportionality apparently depends on the mech- 
anism of dissipation. One would expect this coef- 
ficient to be dependent on strain rate, temperature 
and the characteristic time of the fracture process. 
Previously,/} was approximated as a linear func- 
tion of the total potential energy Pe = -- fg J l ( l )d l  
[7]. On the basis of recent developments in CL 
stress analysis, W i can be approximated by the pro- 
duct Jl (d), where (d) stands for a characteristic 
size of the active zone. Thus,/} can be expressed by 

1) = (hJ~(d) (19) 

where 131 is a phenomenal coefficient with the 
dimension of sec -~. In principle, D can be directly 
evaluated according to Equation 4 as the 

633 



J1 JlC 

Figure 3 Qualitative crack propagation behaviour accord- 
ing to Equation 20. 

difference IV i - 0 .  Whereas the total dissipative 
work Wi is readily measurable from the hysteresis 
loop, the heat radiated by the active zone Q can be 
measured using, for instance, infrared microscopy. 

Substituting Equation 19 into Equation 18, the 
law of CL translation (propagation) is given by: 

] = /31J1 (d} 
(20) 

~,*R1 -& 
The qualitative behaviour of Equation 20 is 
expressed in Fig. 3. One can distinguish three 
stages of slow CL propagation. In stage I, the CL 
translational resistance moment, R,,  is very small 
since the crack propagates through the material 
damaged during the initiation period. For this 
reason the initial slope of the [ versus J~ curve is 
relatively high. Stage II, an intermediate stage, is 
characterized by damage growth accompanying 
crack propagation. This is reflected as an increase 
in R1 yielding a decreasing slope. In these two 
stages, CL propagation is controlled by the dissipa- 
tive mechanisms reflected in /) (numerator in 
Equation 20). Finally, when J, approaches y ' R 1 ,  
the crack can undergo a transition from slow to 
uncontrolled (avalanche-like) mode of propagation 
(stage lII). This transition occurs for unstable 
configurations [8, 18]. 

5. Applicability to eL propagation data 
The law of CL propagation as presented in Equa- 
tion 20 was applied to recent measurements on 
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Figure 4 Experimental fatigue crack layer propagation 
data [11] plotted in terms of Equation 19 (solid line). 

polystyrene under cyclic loading conditions 
(Fig. 4). In this experiment, which is detailed 
in a forthcoming publication [11], evolution of 
the CL was measured using time4apse optical 
micrography. From this, the CL length, l, and 
width, ,T/'(l), were evaluated as a function of the 
number of cycles. In order to apply Equation 20 
to experimental results the following treatment 
was adopted. 

1. The maanitude of the translational resis- 
tance moment Rx can be deduced from Equation 
13, 

R1 = pn~dP = ._-~/2 pdx2 = (p)~K" 
(21) 

where (p) expresses damage (crazing) density 
averaged along the trailing edge of the active zone, 
and , ~ i s  the width of the active zone measured at 
the crack tip (see Fig. 2). Due to the fact that the 
CL propagates in a self-similar fashion [11], the 
average damage density (p) is considered constant. 

2. At critical (avalanche-like) CL propagation, 
we may write 

J~c = 3'*R,c = 7*(P>)Ye (22) 

where the suffix, c, indicates the value of the 
involved parameter at the critical stage. Accord- 
ingly, the term 7"R1( I )  in the denominator of 
Equation 20 may be expressed by 

r ~Y(l)  -~*R~ (0  = ~o~ (23) 

3. The characteristic size of the active zone (d) 
is taken as its length l a (see Fig. 2). 



4. In the case considered here, the dissipative 

coefficient t31 which has the dimension of  sec -z 

is assumed to be inversely proportional to the life 

time of the active zone. This is the period of  time 

within which the active zone is "active",  i.e., 

/i > 0 which is the time required by the crack to 

propagate from the trailing to the leading edge. It 

has been experimentally determined [11] that this 

time is inversely proportional to the square of  the 

energy release rate. Therefore, /3 i was calculated 

from the phenomenological relationship 

131 = /3o J2 (24) 

For the loading conditions indicated in Fig. 4, 

/3o was found to be 4.6 x 10 -3 from least square 

analysis. 

From the above analysis, the parameters needed 

to calculate the rate of CL propagation in terms of  

the proposed law are Jle, ~ and ~Y(1) which are 

experimentally measured. Only one fitting para- 

meter, i.e., the coefficient /3o of  Equation 24, is 

employed. Fig. 4 shows the extent of  agreement 

between the data and the proposed formalism 

within a range of  four orders of magnitude of the 

crack speed. 
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